May’s Theorem: The only group decision function that satisfies decisiveness, anonymity, neutrality and positive responsiveness is simple majority rule.

Definitions: group decision function: \(D = f(D_1, D_2, \ldots, D_n) \), \(n \) is the number of individuals in the group. Each \(D_i \) takes on the value 1, 0 or \(-1\) and corresponds to the preferences of the individuals. Hence, 1 means that individual \(i \) strictly prefers \(x \) to \(y \), \(-1\) means that individual \(i \) strictly prefers \(y \) to \(x \) and 0 means that individual \(i \) is indifferent between \(x \) and \(y \). Thus, each \(D_i \) corresponds to a ballot an individual \(i \) casts between two alternatives. \(F(.) \) represents an aggregation rule that determines the winning issue.

Simple majority rule can thus be defined in the following way:

\[
\begin{align*}
\sum_{i=1}^{n} D_i > 0 & \rightarrow D = 1 \\
\sum_{i=1}^{n} D_i = 0 & \rightarrow D = 0 \\
\sum_{i=1}^{n} D_i < 0 & \rightarrow D = -1
\end{align*}
\]

In words, this definition means that \(x \) is preferred to \(y \) by the group, if the number of individuals strictly preferring \(x \) to \(y \) is higher than the number of individuals strictly preferring \(y \) to \(x \). Some authors prefer to call this aggregation rule plurality rule! Simple majority rule is then defined as: the group strictly prefers \(x \) to \(y \) iff the number of individuals strictly preferring \(x \) to \(y \) is higher than \(n/2 \).

- **Decisiveness:** For all preference profiles the group decision function is defined and single-valued.
- **Anonymity:** \(D \) is determined only by the values of \(D_i \), and is independent of how they are assigned. Any permutation of these ballots leaves \(D \) unchanged.
- **Neutrality:** If \(x \) defeats (ties) \(y \) for one set of individual preferences, and all individuals have the same ordinal rankings for \(z \) and \(w \) as for \(x \) and \(y \) then \(z \) defeats (ties) \(w \).
- **Positive responsiveness:** If \(D \) equals 0 or 1, and one individual changes his preferences from \(-1\) to 0 or 1, or from 0 to 1, and all other individual preference relations remain unchanged, then \(D = 1 \). Some authors prefer to call positive responsiveness monotonicity!

References